
. !

A CSP-Based Agent Modeling Framework for the
Cougaar Agent-Based Architecture

Denis Grahnh, H. Lally Singh
Department of computer science

VirginiaTech
Blacksburg, VA 24061, USA

{gracanin, lally)@vt.edu

Moharned Eltoweissy
Department of Computer S c i e n c m

Virginia Tech
Falls Church, VA 22043, USA

toweissy @vt.edu

Abstract

Cognitive Agent Amhitectun? (Cougaar) is a Java-based
architecture fir hqe-scale distributed agent-based appli-
cations. A Cougaar agent is an autonomous sofrware en-
tity with behavwm that represent a real-world entity (e+,
a business process). A Cougaar-based Model Driven Archi-
tecture approach. currently llllder helopment, uses a de-
scription of system’sfimctionality (requirements) to auto-
matically implement the system in Cougaal: The Commu-
nicating Sequential Processes (CSP) formalism is used for
the formal validation of the generated system Two main
agent components, a blackboard and a plugin, are modeled
as CSP processes. A set of chcuurels represents communi-
cations between the blockboardand individual plugins. The
blackboard is represented as a CSP pmess that commu-
nicates with every agent in the collection The dewloped
CSP-based Cougaar mdelingfiameworkpmvides a start-
ing point for a more complete formal verification of the au-
tomatically generated Cougaar code. Currently it is used to
veri& the behavior of an indiv- agent in tern of CSP
properties and to analyze the correspnding Cougaar soci-
ety.

1. Introduction

Agent-based systems provide a foundation for the devel-
opment of large-scale applications such as logistics man-
agement, battlefield management, supplychain manage-
ment, to mention just a few. An example of agent-based

Michael G. Hinchey
NASA Goddard Space Flight Center

Information System Division
Greenbelt, MD 2077 1, USA

Michael.G.Hinchey @nasa.gov

Shawn A. Bohner
Department of Computer Science

Viginia Tech
Blacksburg, VA 24061, USA

sbohner @ vt.edu

systems is Cognitive Agent Architecfwe (Cougaar) [l, 21.
Cougaar provides a software architectme for distributed
agent-based applications in domains characterized by hier-
archical decomposition, tracking of complex tasks, genera-
tion and maintenance of dynamic plans.

The ability to develop very complex applications comes
at a price. It takes a lot of effort and learning in order to have
complete understanding and the ability to effectively use
such agent-based systems. Cougaar’s capabilities and the
complexity of the systems implemented in Cougaar bring
additional demands for analysis, testing, and verification.
Existing techniques can be adapted to deal with these de-
mands.

The Model Driven Architecture (MDA) approach [15]
can be used for developing applications using’the Cougaar
agent-based archibture. The Cougaar MDA (O A) pro-
vides automated software-artifact generation and simpli-
fies Cougaar-based application development by providing

. aretransMmtothe
General Domain Application Model (GDAM) components.
The GDAM components are then translated into the General
Cougaar Application Model (GCAM) components which
are used to automatically generate the Cougaar code (soft-
ware applications) 181.
As a h t step for the formal verification of the gener-

ated Cougaar-based system, a formal model is used to ver-
ify the behavior of a Cougaar agent. Single-agent and multi-
agent communications models provide a framework for the
formal verification of requirements specifying a Cougaar-
based application and its properties. Home’s Communicat-
ing Sequential Processes (CSP) formalism [S, 12, 181 is

two abshauion layers. Req

used to develop a formal’model of a Cougaar agent and a
simple CSP model of a Cougaar-based system.

The remainder of the paper is organized as follows. Sec-
tion 2 briefiy describes Cougaar and its capabilities. Sec-
tion 3 describes approaches to the modeling of agent-based
systems. Section 4 discusses the CSP-based Cougaar model.
Section 5 provides an example, while Section, 6 concludes
the paper.

2. CO- Apt-- Architecture

Cougaar is a large-scale worh3iow engine built on a
component-based distributed agent architecture [11. It is de-
ployed as a society of agents, which communicate and work
together to solve a problem. A Cougaar society is a set
of agents running on one or more i n t e ~ ~ ~ ~ t ~ t e d comput-
ers, all worbing together to solve a common class of pmb-
lems. The problemmay be partitioned into sub-problems, in
which case the responsible subset of agents is called a com-
munity. A Society may have one or more communities. The
relationship between societies, communities, and agents is
not a strict one; a society may directly contain both agents
and communities. W e a society has a real-world repre-
sentation, a set of computers nmning a Cougaar system, a
communityis only notational in nature.

Some recent efforts in -sing h g a a r architectural
characteristics include performance and survivability en-
hancements. There are many different requirements on the
metrics collection and communication channels [lo]. Per-
formance improvements and measurement require the use
of multiple communication channels to improve overall per-
formance with some data duplication overhead. A general
approach for dynamically improving overall system s d -
ability for the large class of applications is described in 191.
Constraints include finite resources, multiple dimensions of
success, and global optimization of the goal.

2.1. Agent

A Cougaar agent is a first-class member of a Cmgaar So-
ciety 111 and it contains a Blackboard and one or more Phi-
gins. While the specific purpose of any agent is chosen by
the system developer, the objective is for a single agent to
represent a single organizational entity or part of that en-
tity.

At the most basic level, an agent conskts of two parts: a
Blackboard and a set of Plugins (F@ure 1). The former is a
container of objects, with a subscription-based change noti-
fication mechanism; the latter is a set of responden to these
notifications, with the ability to change the contents of the
Blackboard.

The Blackboard serves as the communications backbone
connecting the Plugins together. More importantly, it sexves

Figure 1. Cougaar Agent Structure El]

as the entry point for any incoming messages to the agent as
a whole, which are then picked up by the Plugins for han-
dling. All instancespecific behavior of the agent is imple-
mented within the Plugin. A Plugin listens to d, remove,
and change events on the Blackboard. Evaluating the ob-
jects iavolved in the event, the Plugin may respond by per-
forming some computation, changes to the Blackboard, or
some external work.

A Cougaar Node conceptualy encapsulates a set of
agents. Agents can collaborate with other agents in the
same Node or with agents in other Nodes. However, it is
not a direct collaboration. Instead, Cougaar Tasks are do-
cated to Cougaar organizations, which are representations
of agents in the local Blackboard. The subscription mecha-
nism allows agents to use Tasks to exchange messages (ob-
jects). The Cougaar communication infrastructure then en-
sures W the Task is sent to the destination Organization’s
(i.e. agent’s) Blackboard.

.

2.2. Multi-Agent Communications

Cougaar’s multi-agent communications system is quite
sophistica.ted. There are several ways for agents to commu-
nicate with each 0th. The methods are mostly based upon
a Plugin, be it a specialized or a library component, observ-
ing one agent’s B l a c M and propagating relevant data to
allother.

2.3. C o w Model Driven Architecture

The MDA approach advocates converting a Platfom In-
dependent Model (PIM) into a Platform Specilic Model
(PSM) through a series of transformations, where the PIM is
iteratively made more platform-specific, ending in the PSM.
The PIIvf is used to represent system’s functionality without
including any technical aspects (Table 1).

\

The encoding of requirements is done in stages using the
“separation of concerns” principle. Fist, the w o r l d l ~ ~ of
the intended system needs to be drawn up. Then, the re-
quired domain components are retrieved from the repi-
tory, the parameters for the components are provided and
the components are linked to obtain the domain model of
the system. The platfam-independent model is represented
in the General Domain Application Model (GDAM) layer,
while the General Cougaar Application Model (GCAM)
layer provides the platform--specific model. Once the do-
main model is validated, the developers can check and en-
sure that the GCAM components required to implement the
domain model are present and linked properly. The linked
GCAM components represent the application model of the
intended system. Developers also ensure that the require-
ments captured in the domain level have been transformed
into application parameters properly. Once the domain and
application models are properly built, the user can instruct
the system to convert the models into required software arti-
facts including Requirements, Design, Code and Test cases.
The transformation of the models into software artifacts is
handled by the compiler of the Cougaar Model Driven Ar-
chitecture (CMDA) system. Once the compilation is com-
plete, the user is informed of emrs and warnings. Hence
the CMDA system deals only with requirements collection
from the user and allows users to verify the requimmts
that have been properly transformed into application model
parameters.

Computationally Independent Model
(input requirements)

Platform Independent Model

Platform Specific Model

Tame 1. Basic CMDA Approach

The following goals and priorities were formulated in or-
der to develop a tool based on the proposed approach [SI:

0 Fully automatmi software artifacts (requirements, de-
sign document, code, and test cases) generation is a
desirable goal.

0 The generated requirements are partial in nature.

0 The development of tools and implementation mech-
anisms are of lower priority than formulating the
“recipes” for transformations.

3. Modeling Agent-Based Systems

Large agent-based systems usually operate in a distrib-
uted manner and depend on the underlying communication
bfrastmcture designed for a specific system. Sound thee
retical concepts can provide solutions for distributed multi-
agent systems tbat are superior to “usual” ad-hoc irnplemen-
tations p1.

Suitabiity of agent modeling techniques to agent-based
systems development is discussed in [20]. It provides direc-
tions for research and development of agent-orientd mod-
eling techniques. A set of criteria is projxxed, based on the
desired characteristics, for appropriate modeling tezhniques
and approaches.
The Specification Language for Agent-Based System

(SLABS) [191 is based on a meta-model of multi-agent sys-
tems. An agent-based system is modeled at two levels. The
macro-level describes the relationships among agents. The
micro-level describes rhe behaviors of individual agents. A
diagrammatical notation includes collaboration, behavior.
andscenariodiagrams.

Petri nets 17,161 are used extensively in modeling, sim-
ulation and analysis of distributed and multi-agent systems.
Predidtransition nets, a form of high-level Petri nets, can
be used to construct a multi-agent model where transitions
repmxnt agent capabilities [24]. Analysis of Petri net prop-
erties like reachbility, liveness, etc., are used to ve* that
the multi-agent plans indeed achieve their goals.
DESIRE is a framework for compositional systems (in-

cluding multi-agent systems) 141. It uses hierarchid task
decomposition and supports specification of agents that in-
tegrates reasoning with interactions (communication, obser-
vation and actions execution) and executive autonomy. The
semantic approach based on temporal logic is outlined and
applied for the case of compositional multi-agent systems.

The TYPELAB system provides a reflective architecture
for formalizing and reasoning about amfacts created dur-
ing a software development process [lq. Object- and meta-
level reasonings are combined using reflection principles to
generate “standard” units.

The CSP formalism uses a simple event-based descrip-
tion and algebra for the desgiption and analysis of systems
[ll, 121. Originally designed for Transputers [231, it pro-
vides a solid theoretical foundation for modeling software
system behavior and formally proving properties.

The core CSP components are processes and events. An
event is an atomic, named entity. A process is a definition
of allowable sequences of events. It is defined as a set of
events with arrows (-1) between them.

Processes may use recursion, conditionals, states, and
references to other processes to define these sequences. A
process’ state may be shown as a subscript. Processes may
be composed together using the parallel operator (il), such

that the actual event that occurs determines which of the
processes executes.

Processes communicate through fixed, named, unidirec-
tional channels. Such channels have exactly one hed in-
put process, and exactly one fixed output process. The act
of sending a message over the channel is actually an event
with two different names in the two processes. An output
event is shown as a channel name followed by an exclama-
tion point, followed by the. message being sent. For exam-
ple &.fm semis the message m over the channel out. input
events use the similar notation, with a question mark replac-
ing the exclamation point

CSP can be extended, for example, to include priority
specifications 163. Appropriate algorithms can be developed
to analyze properties of distributed systems that use a CSP-
like communication infrilstructure 1131. CSP models for a
specific progammkg language implementations further in-
crease modeling capabilities (e.g. for Java [22]).

4. CSP Framework for Cougaar-based sys-
iem

The control architecture of the Cougaar distributed agent
system [14] consists, at the node level, of the following
components:

0 Operating mode: a data structure for control inputs.

0 Conditions: generalized sensor input information.

0 Plays: control laws (resmctions on operating modes

0 Playbook: a list of plays tested in sequence for c m n t

0 Playbook manager: a component maintaining and ma-

and conditions).

conditions.

nipulating a playbook.

havior.
0 TechSpecs: a high-level description of components be-

0 Adaptivity enginc a controller for the agent and some

0 Operating mode policy: higher-level system policy.

This control architecture can be easily adopted for vari-
ous applications. Given the characteristics of an agent-based
system, it is difficult to apply conventionally control theory
methods directly [141. Large-scale parallelkation and scal-
ability is achieved by using a multi-tier communication in-
frastructure where each tier uses different communication
techniques [21]. The CSP-based Cougaar modeling frame-
work can provide a formal framework to analyze behavior
of a single agent and its interactions with other agents.

other external components.

4.1. Single Agent

There are two assumptions used in developing the CSP
model of an agent:

The Plugins attached to a given agent are lixed. All
Plugins are known at the start and the set m o t
change over time. However, a Plugin may decide to
start or stop participating with the agent it is connected
to at any time.
A subscription mechanism is replaced by a broad-
cast mechanism. Each Plugin is notified of every add,
change, and r e m e occuning on its Blackboard.

These assumptions may affect the accuracy and effi-
ciency of the systems. The model accuracy can be preserved
by introducing a UnaryPredicate that filters Blackboard
events. Upon reception of a Blackboard event, the Plugin
can evaluate its UnaryPredicate, and ignon: the event if
the predicate returnsfalse. If the actual Plugin is only sub-
scribed at certain times, we model its subscription state as
a state variable s. Then, the UnaryPredkafe can simply run
with an additional requirement, that s = true. Reduced ef-
ficiency, while important for deployment, is not relevant for
modeling the system.
An agent is deked as:

A = < Bo,P >
where Bo is the Blackboard, 0 is the set of objects, P =
{ p l , ~ z , . . . p ~ } isthesetofPlugins,andNisthenumber
of plugins in P.

4.2. communication

Before getting into the details of the agent's components,
it is necessary to describe the communications channels be-
tween the Blackboard and the Plugins. The Blackboard &-
fines N input channels &, . . . , ON). These channels accept
input from the respective Plugins (pl , . . . , PN). The Black-
board sends its notifications to the Plugins via the respec-
tive channels (pl,. . . , p ~) .

43. Bladrboard

The Blackboard contains objects, which are modeled as
an embedded pairs.

object =< types, attributes >

types = {tl,tZ,...}
attributes = {< namel, value >, < name, valuez >, . . .}

The object represents any arbitmy object that can be
put on the Blackboard. In the actual system, this is an in-
stance of a Java class. The class is always a descendant of

the Objecr class. The object is an ordered pair of types and
a ntt77;hirtes. The types i s the set of names. including the ob-
ject's real type, and the names of all supertypes. The types
always contain the element Object due to Java's inheritance
model where the Object class is the root of the Java class bi-
erarchy. The attributes is the s e ~ of object attributes repre-
sented as < name, value > pairs. The set of all possible
objects is dehed as 0.

The Blackboard is modeled as the CSP F'rocess Bo with
the state 0 = {q, e,. . .} representing the set of the cur-
rent Blackboard objects. 0 is always a subset of 0. The al-
phabet of the Blackboard's CSP process Bo includes sym-
bols LMY, change, r e m e , and all the objects in 0.

The subprocesses of the Blackboard, Add, Chg, Rem,
and Notify are shown in E m 2. Add, Chg, and Rem
take in the object o from the same input channel, update 0
as needed, and call Notify to notify the Plugins. Notify's
definition is simple, it sends the event e (be it add, change,
or remoue) and the object o to al l the Plugins via their in-
put channels.

4.4. Plugin

A Plugin pi is a CSP process that:

1. Belongs to an agent.
2. Listens on an input channel p; for events.

3. Decides if each event is relevant.

4. If relevant, acts in response to it, possibly resulting in
additional events on the Blackboard.

The first and second steps have already been de-
scribed. The third step is essentially a model of the Cougaar
UnaryPredicafe. As shown in the Blackboard model, a
CSP process can use conditional statements. An exam-
ple of a simple unary predicate is shown in Elgurc 3.
and the corresponding CSP model is shown in Fig-
ure 4.

The subprocess P d (0) acts as a predicate, proceeding
forward when the object matches, recursing back to pi when
not. The other subprocess, Act(o) is the response action to
a satisfied predicate. In this case it simply posts a String
with value "PAID" to the Blackboard.

45. Multiple Agents

The support for multiple agents and their interactions is
provided by the middeman that maintains channels with all

process

let
Bo =

process
A d d (0 , i) =

&?o -i
if o $ 0 then 0 := O u { o }

else STOP
-i Notify(add, 0)

Chg(4 =
B;?o ---$

if o $ 0 then STOP
else Noti,fy(change, 0)

Rem(0, i) =
p;?o -+

if o E 0 then 0 := 0 \ { o }
-+ Notify(rernove, 0)

else STOP

Vi E N, (p;!e + p,!o) + Bo
Notz,fy(e, 0) =

N ll+l P i ? c d +

if crnd = add then Add(0, i)
if cnd = change then Chg(i)
if cmd = remove then Rem(0, i)
else STOP

Figure 2. Blackboard

the Plugins in the system, and relays messages to a new in-
put channel for each Blackboard. Each Agent, Plugin, and
Blackboard are uniquely named within the global scope.
That is achieved by adding another subscript, a, to every
identifier. This subscript identifies the AgentBlackboad
The middleman's channels coming in from each plugin in
the system would be pa,, corresponding to the channel's
source, the Plugin pa,;. The channels going out from the
middleman to each Blackboard are named pa,O*

5. Example

The Dining Philosophers problem [161 is used as an ex-
ample. In this problem, there is a circular table with D
seats, D forks, and with a bowl of spaghetti in the mid-
dle. At random intervals. any one of D philosophers sits
down, picks up the forks on the left and right, consumes
spaghetti for a random amount of time, puts down the forks,
and stands up again. If all D philosophers sit down at once,
pick up the fork on their left, and then try to pick up the right
fork, they will deadlock waiting for the philosopher on their

UnaryPredicate ClearPaymentPredicate =

public boolean execute (Object 01 (

ne- UnaryPre6icate () i

if (0 instanceof Task) {
Task task = (Task) 0;
if ((task.getVerb0 != null) h h
task-getverb () . tostring () .equals (
Bo1SocietyUtils.PAYMENT-VERB)) [
return true;
1

1
return false;

1
};

Figure 3. UnaryMicate code

process
P, =

let
process
Pd(0) =

if Tmk E 0.- and
< uerb, PAYMENT-VERB >

E 0 . m t e S

then SKIP
else Pa

A d (o) =
pi!& -+

PI! < {Object, String},
{< value, PMD >} >-+ SKIP

p,?e -+ p,?o -+
if e = add then Pred(o) g Act(o) ;pi
else Pa

process
Listen(o) = pn?e -+ pn?p +

if
0.types E p.types
ando. attributes E p . attributes

then Remove(0)

else Listen(0)

Figure 5. Abstraction Processes

tion process posts a Response object to the Blackboard,
mirroring the parameters of the Request.

52. Pbilosopbem

All a philosopher does is to repeatedly get the two forks
and release them in left-to-right order. The philosopher's
sitting, standing, and eating states are not devant for the
deadlock problem. As shown in Figure 7. there are two sub-
processes for getting and releasing the forks (% denotes the
modulus operator).

Figure 4. Example Plugin
5.3. Deadlock

right to put down the forks. To illustrate the model's use, a
CSPlCougaar model of the problem is provided, followed
by the description how the deadlock occurs.
Three CSP abstraction processes are used as subroutines

to add, remove, and listen for objects on the Blackboard.
The listener removes the object it founds (Figure 5).

5.1. Forks

Figure 6 shows that reservation and allocation sub-
processes are executed repeatedly. The reservation sub-
process waits for a Request object to be placed on the
Blackboard, specifying a get of the fork i. The alloca-

A deadlock state of the system is described by provid-
ing an ordered list of events that prevents any subsequent
event. F i t two philosophers and two forks are shown in
Figure 8. Only the relevant events are described, add events
of requests or responses tbat try to get or to release a fork.
Each philosopher successfully gets a left fork. The first at-
tempt to acquire a right fork will cause deadlock. It is im-
portant to note that releases of forks are not ignored; none
actually occurs here. To prove that a system does not dead-
lock is far more difficult. CSP provides rewriting rules and
equivalence relations to help analyze a model for a specific
PrOpeaY.

process

let
FORK; =

process
Reserve(i) =

Listen(
< {ReqtCe41
{< id,; >,< act,get >} >

1
g Post(

)

< {Object, Response},
{< id, i >, < act, get >} >

AZlomte(i) =
Listen(

< {Reque4,
{< id,z >,< act,release >} >

)
;Post(

)

< {Object, Response},
{< id,i >,< act,release >} >

Resave(i)gAZlomte(i)g FORKi

Figure 6. Forks

6. Conclusions

Haare’s CSP can be used as a formalism for modeling
and analyzing distributed multi-agent systems. A basic CSP
model of a Cougaar system can be generated in parallel with
the CMDA generated Cougaar code. It pmvides a model
for analyzing the interactions of agents, their Plugins, and
Blackboards. A CSP tool is then used to detect deadlocks
or to determine other CSP propexties

While the described a p p m h simplilies some character-
istics of the Cougaar agents and related components, it is
a stepping stone towards a more complete analysis. Cur-
rent research focuses on completing the CMDA develop-
ment where the major focus is on the formal validation of
the generated Cougaar code.

Acknowledgements

This work has been supported, in parf by the DARPA
SlTR grant “AMIE Phase II - Cougaar Model Driven
Architecture Project,’’ (Cougaar Software, Inc.) subcontract
number CSI-2003-01. We would like to acknowledge the ef-
forts, ideas, and support that we received from our research
team including Todd Canico and Tim Tschampel.

process
Pa =

let
process

Get(i, s) =
Post (

< {Object, Request},
{<idy; >,< aCt,get >,
< side,s >} >

< {Response},
8 Listen(

{ < id, i >, < act, get >} >
1
Post(

ReZease(i, side) =

< {Object, Request},
{< td, z >, < act, releuse >,
< side,s >} >

< {R-ponse},
{< id, i >, < act, release >} >

1
; Listen(

Get(i, kft) g Get((i + 1)%N, right)
g Release(i, Zeft)
g ReZease((i + 1)%N, e h t) g p,

Figure 7. Dining Philosophers

failure =
(add,< {Requ-t),

addl < {Requ-tl l

d l < {Reque&,

. . .)

{< id, 1 >, < act, get >, < si&, left >} >,
add, < {Response}, {< id, 1 >, < act, get >} >

{ < i d , 2 > , < a c t , g e t > , < s i d e , k f t > } > ,
add, < {Response}, {< id, 2 >, < act, get >} >,

{< id, 2 >, < act, get >, < d e , right >} >

Figure 8. Deadlock state

Part of this work was supported by the NASA God-
dard Space Flight Center Technology Transfer Office. Denis
GraEanin was supported by an ASFWNASA Summer Fac-
ulty Fellowship hosted at the NASA Software Engineering

Laboratory (Code 581), NASA Goddard Space Flight Cen-
ter.

References

[I] Cougaar architecture document. Technical report, BBN
Technologies, 5 July 2004. Version for Cougaar 11.2.

[2] Cmgaar developers guide. Technical report, BBNTechnolo-
gies, 5 July u#)4. Version for Cougaar 11.2.

[3] J. W. Am- and J. Bema Communication in large dis-
tributed AI systems for natural language processing. In Pro-
ceedings of the 16th Conference on Cotnpmional Linguis-
tics, pages 35-40. Association for Computational Linguis-
tics, 1996.

[4] F. Brazier, P. van Eck, and J. T m . M m of a mod-
e l r ig framework for multi-agent systems. In R. A l M t
and H. Herre, editors, Tmnh in Theoretical Informatics,
voIume 89 of Schriftenreihe der Ostemicfichen Computer
GeselZschuft, pages 173-191. R. Oldenbourg, Wim. 1996.

J. Davies. Specification and Proof in R e d - T i e CSP. Distin-
guished Dissertations in Computer Science. Cambridge Uni-
versity Press, Cambridge, 1993.

C. J. Fidge. A formal definition of priority in CSP.
ACM Transactions on Programming h g u a g e s and Sys-
tems, 15(4):681-705, 1B3.

D. GraEanin, P. Srinivasan. and K. P. Valavanis. parameter-

ized Petri nets and their application to planning and d-
nation in intelligent systems. IEEE Transactions on Systems,
Man, and Cybernetics, 24(10): 1483-1497, Oct. 1%.

D. Grabin , L. H. Singh, S. A. Bober, and M. G. Hinchey.
Modeldriven architecture for agent based systems. In M. G.
Hinchey, J. Ra&, W. T d o w s k i , and C. ROUE, editors,
Proceedings of the Third NASA Workshop on Formal Ap-
proaches to Agent-Based Systems (FAABS 111). volume 3228
of Lecture Notes in Computer Science, Greenbelt, Maryland,
26-28 Apr. 2004. Springex Vexlag.

A. Helsinger, K. Kleinmann. and M. Brinn. A framework to
control emergent survivabiity of multi agent systems. In
AAh4AS '04: Proceedings of the Third Intemutional Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 28-35. IEEE Computer Society, 2004.

A. Helsinger, R. Lazarus, W. Wrighf and J. Zhky. Tools and
techniques for performance measurement of large distributed
multiagent systems. In AAUAS '03: Proceedings of the Sec-
ond International Joint Conferense on Autonomous Agents
and Multiagent Systems, pages 843-850. ACM Press, u)o3.

[ll] M. G. Hinchey and S. A. Janis. Concurrent Systems: For-
mal Development in CSP. The McGraw-W International
Series in Software Engineering. McGraw-Hill Book Com-
pany, London, 1995.

Communicating Sequential Processes.
Prentice-Hall International Series in Computer Science.
Prenticp/Hall International, E n g l e w d Cliffs, New J a s e y ,
1985.

[13] S. T. Huang. A distributed deadlock detection algorithm for
c p l k Commonication. ACM Trrmracrins on PrvgrMyrrin
Languages M d S y s t m , 12(1):102-122. 1990.

[14] K. Klehmann, R Lazarus, and R Tomlinson. An infktruc-
ture for adaptive control of multi-agent systems. In Pro-
ceeding of the International Conference on Integmtion of
Knowledge Intensive Multi-Agent System. pages 23KZ36,
30 Sept.4 Oct. 2003.

[15] A. Kleppe, J. Warmer, and W. Bast. MDA Explained- The
M A 1 Driven Amhitecture: Practice and Promise. Addison-
Wesley, Boston, 2003.

1161 J. L. Peterson. Pem' Net Theory and the Moakling of Sys-
tems. Prentice-Hall, Englewd Cliffs, New Jersey 07632,
1981.

[17] H. R d , H. Pfdex, and F. von Henke. Formalization and
reasoning in a reflective architecture. In M. H. Ibrahim. ed-
itor, IJCA1'95 Workshop - Refiction and MeralEvel Arclii-
tectum and their Applications in AI, Montreal, Canada, July
1995.

[I81 s. Scbidex. Concurrent and Red-Tune Systemx Thc CSP
Appnmch. Worldwide Series in Computer Science. John Wi-
ley & Sons, Ltd, Chickster. 2000.

1191 L. Shan and H. Zhu. Mudelling and specifying scenarios
and agent behaviour. In Proceedings ofthe IEEDWIC Inter-
national Conference on Intelligent Agent Tecblogy, pages

[20] 0. Shehory and A. Sturm. Evaluation of modeling tech-
niques for agent-based systems. In A G E m '01: Pmeed-
ings of the F@h International Conference on Autonomous
Agents, pages 624-631. ACM Press, 2001.

[21] M. Thome. Multi-& communication abshactions for dis-
tributed multi-agent systems. In Pmeeding of the Inter-
nationnl C o n f e m e on Integmtion of Knowledge Inrensive
Multi-Agent S y s t m , pages 20!&214,30 SepL-4 On 2003.

[22] P. H. Welch and J. M. R Martin. A CSP model for Java mul-
tithading. In Pmeedings of Intemuthal Symposium on
the sofnuan? Engheeting for PamW and Diszri&#ed Sys-
t e m , pages 114-122,10-11 June 2000.

[U] C. Whitby-Strevens. Transputers-past, present and fu-.
ZEEEMicro, 10(6):16-197642, Dec. 1590.

[24] D. Xu, R. Volz, T. Ioerger, and J. Yen. Modeling and ver-
ifying multi-agent behaviors using predicatekinsition nets.
In SEKE '02: ProceeaYngs of the 14th Intemah'od Confer-
ence on Sofrware Engineering and Knowledge Engineering,
pages 193-200. ACM Press, 2002.

[12] C. A. R. Hoare.

32-38.13-16 On 2003.

